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mechanics of phase transitions 
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Germany 
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Abstract. In this paper we will investigate the influence of spontaneous symmetry breaking 
on the dynamical cluster properties of correlation functions of a quantum statistical 
ensemble, that is clustering with respect to time and space-time. While the impact of phase 
transitions on  pure space-like clustering, i.e. the static results, is well known, less seems to be 
known about the dynamical behaviour of response functions and susceptibilities. We are 
able to make precise statements which show that, contrary to the static case, the decay 
properties depend sensitively on the type of Goldstone excitation. 

I. Introduction 

In this paper we will deal with systems which can exhibit a phase transition accompanied 
by the spontaneous breaking of a continuous symmetry (henceforth denoted by SSB). 

It is well known that the occurrence of SSB, namely of the so called Goldstone 
excitations, affects the equal-time cluster properties of certain important correlation 
functions which are closely related to the generalised susceptibilities of the system 
under discussion (see, e.g., Wagner 1966, Hohenberg 1966). This interrelation 
between SSB and the cluster properties of correlation functions ensures that SSB means a 
phase transition in the classical sense, namely singularities in certain thermodynamic 
functions. 

These equal-time cluster properties are purely static results and it seems worthwhile 
to study the dynamical implications of the emergence of Goldstone particles, i.e. the 
cluster properties in the whole four-dimensional region of space and time. 

It will be shown in the following that it is possible to characterise in a relatively 
rigorous manner the cluster properties of the relevant correlation functions with respect 
to time and space-time. This is satisfying since the change in the dynamical behaviour 
of a system under a phase transition is of practical importance, and to make relatively 
precise statements usually appears to be quite difficult. 

We will make only a few general assumptions which can be easily controlled in the 
models under discussion and which allow us to apply our approach to almost every 
model of a phase transition with SSB, thereby obtaining detailed information about the 
cluster behaviour. 

One of our main assumptions will be that the Goldstone quasiparticle is relatively 
long-lived, in other words that the collective excitation is sufficiently sharply peaked. 

0305-4470/80/051769 + 13$01.50 @ 1980 The Institute of Physics 1769 



1770 M Requardt 

This restricts our approach to the region well below the critical point. In the region 
where the system behaves nearly critically the renormalisation group technique must be 
applied. 

2. General results about the behaviour of systems in the presence of SSB 

In this section we will compile some general statements and concepts needed in 
connection with SSB. 

In the following we consider only bulk effects of the system. We therefore have to 
work in an infinitely extended medium, that is we have to perform the thermodynamic 
limit V + CO. By the usual procedure of quasi-averages, we arrive at the pure phases of 
the system. The thermodynamic state representing one of these phases is denoted by w.  
Let d denote the class of quasilocal objects of the theory, which consists roughly of the 
measurements and operations which can be performed in a finite region of space, such 
as, e.g., the local densities and currents. Elements of d are denoted by A,  B .  . . . 

A(x, t )  means the space-time translated element A and w ( A )  is the expectation with 
respect to w. Since w is the limit of Gibbs states we get o(A(t))  = w ( A ) ;  furthermore, w 
is assumed to be translationally invariant. w must fulfil the so called Kubo-Martin- 
Schwinger condition (KMS), which we need only in its Fourier-transformed form (see, 
e.g., Haag et a1 1967). 

Let J ( k ,  w )  denote the Fourier transform (FT) of the truncated two-point function 
(A(x, t)B)T:= w ( A ( x ,  t ) B )  - w ( A ) w ( B ) .  Then the KMS condition reads 

(1) 

with p = (kBT)-' .  
Now we assume a one-parameter symmetry group which acts on the elements of d 

to be present in the system, At  least in a formal manner, an infinitesimal generator Q is 
given; this is usually built from a conserved density q ( x ,  t ) ,  &q(x ,  t )  +Vj(x ,  t )  = 0: 

FT of w ( [ A ( x ,  t ) ,  B ] )  = (1 -e-'")J(k, w )  

Q ( t )  := dxq(x, t )  Q ( t )  = Q 

when the symmetry is conserved. When the symmetry is spontaneously broken the 
above Q does not exist in the usual sense, since the equilibrium state w appears not to be 
invariant under the symmetry, that is there exist elements A with o([Q, A ] )  # 0. 

What is well defined as an operator in the theory is q(x ,  t )  integrated over a finite 
volume. To avoid artificial singularities in the theory by using a sharp volume boundary 
and to perform the IT more easily, we define a smooth cut-off by defining a class of 
functions which can be differentiated infinitely often: 

Then a rigorous formulation of SSB is 

lim W ( [ Q R ( t ) ,  AI) f 0 
R-tm 

for at least one A E d. Furthermore, the limit is to be independent of t since the 
symmetry group commutes with the time evolution. 
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We restrict ourselves to short-range interactions. When the interaction is of long 
range new phenomena can occur and the Goldstone picture need not work in the usual 
manner, as, for example, in some models of superconductivity. 

Before we derive the main results of this section, some words about the general 
properties of the two-point functions w ( q ( x ,  t)A)= and J ( k ,  w )  are appropriate. 

Lemma 1. If q ( x ,  t )  is a density covariant under translations, in other words if 
V ( a ,  ao)q(x, t )  U-’(a,  ao) = q ( x  +a ,  t + ao) with V ( a ,  ao) the translation operator, it 
can be shown that J ( k ,  w )  is a measure. 

Proof. The proof relies on the functional analytic approach to measure theory (see, e.g., 
Bourbaki (1967) or Schwartz (1966)). A distribution J ( k ,  w )  is a measure if 

lim I J ( k ,  w)f , , (k ,  a) dk dw = 0 
n -m 

(3) 

holds for every sequence of functions which are elements of Yoo (the continuous 
functions of compact support) with f,, -+ 0 in the supremum-norm topology, f,, having 
their support in an arbitrary but fixed bounded domain of R4. 

Several proofs are available. The most general one runs as follows. Because of the 
properties of (q  (x, t)A(x’, t’))  and translation covariance, the Cauchy-Schwartz 
inequality can be applied yielding 

l2 1 J” FqA(x-x’, t-t’)f(X)g(X) dx dx’ 

with x, X ’ E  R4, f and g real test functions and F q ~ ( x  - x ’ )  := (q(x)A(x’)). 
Fqq and F A A  are positive semidefinite functions; hence their Fourier transforms 

Fqq and FAA are positive measures by the Bochner-Schwartz theorem (see, e.g. 
Schwartz 1966). The Fourier-transformed version of the above inequality reads 

We choose f and of compact support with i = 1 on the support of f This yields 
2 1 fiqA(P)f((P) dpl s J” Fqq(P)f?(p) dp xconstant. 

Choosing now a sequence f , ( p )  as in (3), the right-hand side goes to zero according to 
the measure property of pqq; hence the left-hand side and FqA are shown to be a 
measure also. 

We can make the following remarks. 
(i) The physical implications of J ( k ,  w )  being a measure will become clew in the 

following. This property is mainly a statement about the possible singularities of 
J ( k ,  U ) .  

(ii) If q ( x ,  t) is not translationally covariant, J ( k ,  U )  will have stronger singularities. 
For example, the densities which generate the Galilei boosts have the form -xp(x, t) + 
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i j l (x ,  t )  where p and j denote particle density and particle current. J ( k ,  w )  is now the 
derivative of a nieasure and is therefore more singular. 

The well known argument connecting SSR with a Goldstone excitation mode runs as 
follows: 

constant = lim w ( [ Q R ( t ) ,  A ] )  -1im ~ R ( x ) o ( [ ~ ( . v ,  t)A]) dx (4) 
R-CC R c 

= lim k ( k )  e’”‘(1 -e-””)(k, U )  dw dk 
R 1 

where a tilde denotes the Fourier transform. 
Because of the definition of f ~ ( ~ ) , { f ~ ( k ) }  converges towards S(k)  in the limit 

R -+ W. The limit is time independent, which means that in the limit R -+CO the only 
contribution comes from a branch going through (k, w )  = (0,O). More rigorously, 

constant x ~ ( w )  = lim fR[k):1 -- e - ” ) ~ ~ ( k ,  w )  dk. ( 5 )  
R I 

Since the left-hand side is non-zero, J ( k ,  w )  has to become singular in (k, w )  = (0,O) in 
order to compensate for the vanishing of (1 -e-@”). The precise behaviour of J(k, w )  in 
the vicinity of (k, w )  = (0,O) will be the main result of the rest of this section. 

Without restriction we can choose A - A *  (by passing from A to ;(A + A * ) ,  
:i(A -A*)  respectively). Then the KMS condition yields 

~ ( k ,  w)-.T(-k,  -0) = (1 -e-@”)J(k, w ) .  

That is, 

Re J( - -k ,  - w )  = e-BW Re J ( k ,  w )  

Im ~ ( - k ,  - w )  = -e--pw Im ( k ,  w ) .  

Without restriction we can choose ~ R ( x )  to be real and symmetric. Then f R ( k )  is 
symmetric and we obtain 

~ ( [ Q R ( O ) ,  AI) 

= I fR (k)( 1 - e-””)(k, w )  dk dw 

= (. . .) dk dw + (. . .) dk d u  i,Io JL0 
I,*, 
Lo 

= i  f~(k)[(l -e-’”)-(l --eow) e-”’] ImJ(k, w )  dk dw 

f f R ( k ) [ ( l - C - @ ” ) t  ( l -e”)ee-””]eJ(k,w)dk dw. 

In the second term the expression in square brackets vanishes identically. So we arrive 
at the following conclusion. 

Lemma 2. SSB is connected only with the imaginary part of the measure J(k, U ) .  It is 
sufficient to take only the part Im J(k, w )  with w s 0 into account. 
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The first term simplifies to 

2i { ?R ( k ) ( l -  e-5w) Im J ( k ,  w )  dk dw. 
02.0 

Hence the singularity which shows up in J ( k , w )  when SSB occurs has to be a 
contribution from Im J ( k ,  w ) .  

Qur next aim is to analyse the singular behaviour of J ( k ,  w )  in (0,O) which has 
already been indicated in (4). According to a general theorem, we can split the measure 
J ( k ,  w )  into a pure point measure Jpp, a singular continuous part J,, and an absolutely 
continuous term Jac: 

J = Jpp + J*c + Jac. (7) 

Jpp is a sum over discrete S contributions in R4, i.e. Jp,(k, w )  = 
C, c,S(k - k, )S(w -ut), J,, is absolutely contirruous with respect to Lebesgue measure, 
Jac(k, w )  = . f ( k ,  w )  dk d o  with .f a locally integrable function, and JSc is a measure 
concentrated on a subset with Lebesgue measure zero but without discrete points. 

Since we are interested only in the contribution which is responsible for the phase 
transition we write J as J, tJ, with J,l the part which does not contribute to 
limR([QR, A ] ) ,  i.e. the contribution extrapolated from the regime where the system is 
normal, that is, where there is no SSB. The effect of the symmetry breaking is assumed to 
be concentrated completely in J,. In the following theorem we state some necessary 
properties J,  has to fulfil in order that a phase transition can take place. 

Theorem 1. Assuming SSB the following hold. 
(i) J,  does not consist of a pure point contribution cS(k)S(o). 

(li) When one can perform the limit R -+ 00 under the integral there is no SSB. 
(5) JJk, w )  is not a continuous bounded function in (0, 0), that is, J,(k, w )  has to 

become singular in (0 ,O);  in particular, J,(O, U )  = 0 for w f 0. 

Proof. 
(i) A pure point contribution implies lim(,,,,,(q(x, t)AjT f 0 but in a pure phase we 

have ergodicity, i.e. clustering of truncated correlations, lim(, ,)+&(x, t)AjT = 0 (see, 
e.g., Ruelle 1969). 

(ii) 'This would yield constant x S ( w )  = (1 -e-P")J,(O, w ) .  As a restriction of 
J,(k, w )  Jq(O, 0 ) )  is also a measure. The left-hand side forces it to be a pure point 
measure in w = 0 ;  hence J,(O, w )  = & ( U ) .  But (1 - e-P0) is zero in w = 0; hence the 
constant is zero, which means that there is no SSB at all. 

(iii) With J,(k, w )  continuous in (0,O) the performance of lirnR under the integral 
would be allowed (remember that ?R is a S sequence); hence (ii) follows. 

To develop a feeling for what can happen we now show that both a singular 
continuous term and an absolutely continuous term can produce SSB. A typical 
contribution belonging to Jsc is a sharp excitation branch defined by a continuous 
positive function ~ ( k )  with ~ ( 0 )  r= 0. With the symmetry condition (6 )  Js(k, w )  can be 
written in this case as 

J,(k, U )  = J ( k ) S ( w  -a(k))-e-""'J(-k)S(w + r ( k ) ) .  (8) 
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J ( k )  is to be a local integrable function; the second contribution is the quasi-hole 
excitation branch for w < 0. Inserting this into expression (4) we arrive at a condition 
J ( k )  has to fulfil in order that a phase transition can emerge: 

constant = 2i lim f R ( k ) ( l  -e-8u(k)) ei'"'k'J(k) dk. 
R I 

With T R ( k ) +  6 ( k )  we get 

with c ( k )  a bounded function in k = O  and c ( 0 )  = -iixconstant. 
In physical terms S(w -cr(k))  has to be interpreted as a Goldstone excitation of 

infinite lifetime, S ( w + c r ( k ) )  as the corresponding hole excitation and J ( k )  as the 
spectral weight of the branch. Hence we arrive at the following theorem. 

Theorem 2. A sharp Goldstone excitation with dispersion law w = cr(k) forces the 
corresponding spectral weight to become singular in k = 0 like (1 -e-8u(k))-', that is 
roughly as a(k ) - ' .  

In the appendix we will discuss several realistic models which will exhibit how the 
above singularity is accomplished. 

An elementary excitation of infinite lifetime is certainly an over-idealisation of the 
real phenomena since there is always interaction between different excitations, but for 
low temperature and small k it is known to be an extremely good approximation (the 
Landau picture of low-lying elementary excitations). On the other hand, it can be 
shown rigorously that an elementary excitation of finite lifetime leads to exactly the 
same results. 

The finite lifetime of the Goldstone particle is expressed by an excitation branch with 
a certain width, but which is still peaked along the idealised energy-momentum curve 
a ( k ) .  Equation (5) indicates that the branch has to shrink to an exact S ( w )  for k = 0; 
that is, the lifetime goes to infinity for k + 0. Furthermore, the excitation exhibits a 
particle behaviour if the width with respect to w of the peak as function of k is much 
smaller than the energy a ( k )  itself. Then a fairly general 'ansatz' is defined as follows. 

Let q5(s) be a smooth function of compact support normalised to 5 q5(s) ds = 1. 
a ( k ) ,  x ( k )  are continuous and, except at k = 0, can be differentiated sufficiently often so 
that ~ ( 0 )  = x ( 0 )  = 0,  a ( k ) ,  , y (k)>  0 for k # 0 with limk,,, x ( k ) a ( k ) - '  = 0. We will 
prove that 

leads to SSB under the same conditions on J ( k )  as in theorem 2. 
We note that x(k)-lq5[(w - a ( k ) ) / x ( k ) ]  is a S sequence in w with { k }  as the index 

set. x ( k )  is a measure for the width of the excitation branch and the peak is along the 
curve w = a ( k )  (with supremum q5(s) in s = 0). 

Theorem 3. An excitation of the shape described in (10) leads to SSB if J ( k )  is of the 
form J ( k )  = c ( k ) a ( k ) - '  with c ( k )  bounded in k = 0 and c ( 0 )  # 0. 
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Expanding exp[-P(x(k)w' + a ( k ) ) ]  and interchanging summation and integration, 
which is allowed because of the compact support of b ( w ' ) ,  we obtain 

@( li? & ( k ) J ( k ) a ( k )  exp[ i (x (k )w'+a(k ) ) t ]q5 (w' )  dw' dk 

The higher terms in the expansion do not contribute in the limit R + CO since the higher 
powers in a ( k )  and x ( k )  mean that they become zero ( a ( O ) = x ( O ) = O ) .  With 
5 q5(w') dw'= 1 and x(k) = o ( a ( k ) )  the above limit equals limR j f ~ ( k ) J ( k ) a ( k )  dk. 
The limit is finite and different from zero only if J(k) = c ( k ) a ( k ) - ' .  

We note that to adjust the general results to the models discussed in the appendix we 
can also write J ( k )  = c'(k)(e'" - 1) simply by a redefinition of c ( k ) .  

Summing up what we actually have proved in this section, we can state the following. 
Theorem 1 is completely general and does not rely on any model assumption. Theorems 
2 and 3 show that as well as a singular continuous contribution in the spectral measure, 
an absolutely continuous term can occur in connection with SSB. Their interpretations in 
physical terms are as a Goldstone mode of infinite or finite lifetime, respectively. 

Some additional remarks seem to be in order concerning the physical interpretation 
of the above results. The excitation of theorem 2 is very reminiscent of a free Bose gas 
with a ( k )  as the energy of the particle. Apart from the function c'(k), the spectral 
weight is l)-', which is exactly the mean occupation of states of momentum 
k with the chemical potential vanishing, J(k, w )  = 1 e"'"(a'(k, t ) a ( k ,  0)) dt = 
f ik8 (U - v ( k ) ) .  We see that the singularity of J ( k )  can be interpreted as the vanishing of 
the chemical potential p,  which can occur for two reasons. 

(i) Bose-Einsiein condensation of particles. 
(ii) The emergence of a collective excitation, for example, magnons (see the 

appendix). In this case there is no particle conservation and the mean number of 
excitations is determined by the macroscopic variables and is therefore not an 
independent variable; hence p = 0. 

3. Cluster properties of correlation functions with respect to time and space-time 

In this section we will show that the presence of a Goldstone mode alters the decay of 
correlations in a significant manner. This is already known for the space coordinates 
with the times in the correlation functions being equal. We will investigate the 
dynamical behaviour of correlations and give precise results concerning the decay laws 
in time and different space-time directions. Furthermore, we show that these proper- 
ties depend sensitively on the type of Goldstone mode. 
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First, we state a general result which shows that the space-time cluster properties of 
( ( q ( x ,  t)A))= are affected in any case when a Goldstone mode shows up. 

Theorem 4. If a system exhibits SSB there exists an element A E S2e such that ( ( q ( x ,  t)A))= 
is not absolutely integrable with respect to (x, t ) ,  which implies poor cluster properties. 

Proof. The proof is very simple since almost all the work has already been done in the 
proof of theorem 1. In particular, part (iii) shows rigorously that J ( k ,  w )  is not a 
continuous bounded function in (0,O). Hence the FT ( q ( x ,  t)A)=cannot be a L’ function 
with respect to (x, t )  since the FT of a L’ function is absolutely continuous (in the sense of 
functions). On the other hand, ( q ( x ,  t)A)T is a smooth function without singularities, 
which implies that the only possibility i s  poor cluster behaviour for (x, t )  -+ CO. 

While theorem 4 convinces us that there is long-range correlation in any case, it says 
nothing about the space-time sectors in which the decay is weakest. To get more 
detailed information we have to rely on theorenis 2 and 3. We restrict ourselves to the 
ansatz of theorem 2, that is, to a sharp Goldstone excitation. On physical grounds we 
expect that this idealisation already exhibits the general feature of the cluster behaviour 
since only an infinitesimal neighbourhood of (0 ,O) turns out to be relevant, and it was 
also shown that in any case a smeared excitation branch has to shrink to &(a) for k -+ 0;  
hewe in an infinitesimal neighbourhood of (0,O) one should be able to treat the 
Goldstone particle as infinitely long-lived. 

For reasons of simplicity, we will deal only with two types of Goldstone modes, 
namely (i) a ( k )  = c k 2  and (ii) a ( k )  = ck ,  k = \kl ,  which are expected to be the most 
important ones and which represent phonon- and magnon-like excitations respectively. 
Furthermore, we take only the singular part J,(k, w )  of J ( k ,  U )  into account. The 
normal. part J,,(k, C O )  is expected not to affect the cluster properties. 

(i) The case a ( k )  = c k 2 .  With (8) we obtain 

I eik ’ x - i w ,  J,(k, w )  dk dw = e i k ~ x ( e - i c k 2 f J ( k ) - e - - p c k 2  eiCk2‘J(-k)) dk. 

The method of stationary phase (see, e.g., Haag and Trych-Pohlmeyer 1977) yields 
for x # O  

exp[i(u+:).r] exp[--ic(u+;)*t]J(u+:) du. 

For x / t  fixed and t + CO the leading term behaves approximately as t-’”J(.v/t); hence 
along every straight line x/t = constant # 0, ( q ( x ,  t)A)?’:= w ( q ( x ,  is absolutely 
integrable. 

The above method becomes problematical for x fixed and t+a3 (we will deal 
without restriction with the case x = 0, t -+ CO) since then J (x / t )  becomes singular. 

We therefore have to modify our approach slightly. Since the poor cluster proper- 
ties are caused by the singularity of J ( k )  in k = 0 we make the following decomposition 
of the identity 1 =:fe(Ec(kl) -+ (1 -f<(Ikl))  withf, a Woo function (i.e. afunction which can be 
differentiated infinitely often) in k of shape 
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Then we obtain 

e i k .  x - i d  J,(k, w )  dk d o  = eik*X-iwye(k)Js(k, U )  dk d o  +. . . . 
The second term is expected to have good cluster properties because the integrand is 
zero in a neighbourhood U, of k = 0 and (1 -fc) is a smooth function. 

Furthermore, since f e  is smooth we have not introduced new artificial poor cluster 
properties by this splitting. So in the following we have only to deal with the term 
4 eik.x-iwyf (k)J,(k, U )  dk dw. 

Since c ( k )  in J ( k )  =: k^.'c(k) was assumed to be continuous in k = 0 we can write for 
x = Q  

j e-'"%(k)J(k, U )  dk dw 

For E sufficiently small the leading term yields 

constant x f, ( k )  1 1 c(0) sin ck2t dk  = constant x (c t )  [omfe(-$) sin k"dk'. (12) 
I k  

The integral is bounded for t + CO and does not converge towards zero (remember the 
properties of f e ) .  So we get a decay - t-"' . We obtain the following result. 

When the Goldstone mode is of the type r ( k )  = ck2, the singular contribution 
J,(k,  U ) ,  connected with SSB, yields the following cluster properties for ( q ( ~ ,  t)A)=. 

(i) -t-'" for x fixed and t + CO; 
(ii) -t-3'2 for a straight line x / t  = constant # 0. 
We can give an interesting physical interpretation of these results. We can relate the 

velocity of the Goldstone modes roughly with da(k) /dk.  Then we see that for k + 0 the 
velocity also approaches zero. In other words, the long wavelength Goldstone excita- 
tions, excited by A,  stay for a relatively long time in the vicinity of the support of the 
operation A.  So it is plausible that we get a bad decrease in the time t alone. 

(ii) The case a ( k )  = ck. Here we have two relevant cases. 
For x = 0, t + CO we get by the same method 

The leading term yields 

f,(k)k sin ckt dk 

U 
= constant X - J f,(k) cos ckt dk 

d(ct) o 

= 5 1 constant x - I + m f e ( k )  cos ckt dk 
d(ct) -m 
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with 
support. Hence the above expression falls off faster than every inverse power of t. 

(x, t )  = (ct2, t )  with 2 an arbitrary but fixed unit vector. Then one obtains 

the symmetric extension of f6 which is also an element of (eoo and of compact 

The second interesting case is the decay along a straight line x /c t  = constant, that is 

The leading term yields 

constant Io fc(5) (sin k')2 dk'. (15) 
constant lom fc(k)(sin c tk)2  dk = 

C t  ( C d 2  

Now the integral increases approximately with t since it is roughly equal to 
JTf (sin k')* dk' .  So one gets a decrease which goes approximately as t - l .  

Hence a Goldstone mode with c ( k )  = ck gives the following cluster properties. 
(i) Faster than every inverse power of t for x fixed and t -j CO. 

(ii) Proportional to t-' for every straight line (x, t )  = (c@, t ) .  

The physical interpretation is also transparent. Even for k+O the velocity 
dcr(k)/dk of the Goldstone excitations stays finite. The phonon-like excitations travel 
away from the support of A into all space directions with the constant velocity c. So we 
get poor cluster properties in every direction (x, t )  = (cti?, t )  with 2 arbitrary. 

4. Examples 

It seems worthwhile to discuss the consequences of the general results derived above in 
typical physical systems. 

Let us take, for example, the Heisenberg ferromagnet with spontaneous magnetisa- 
tion pointing in the z direction. S(x'~iY'~(z' are the Pauli spin matrices with [Six', Si''] = 
iSiiSP', where i, j denote the sites on the lattice H3. 

Hence we can make the following identifications: 

We get 

lim ([ s ' x ' ( i ,  t ) ,  s'Y'(o,o)]) = i(s(z'(0,o)) # 0. 

The Goldstone particles are the well known ferromagnetic magnons with dispersion 

So, applying our general results, we arrive at the statements: 

6) 
(ii) (S'"'(0, t)S'Y'(O, o))T- t-1'2. 

R-oo l i l sR  

law w - Ikl2 for k + 0. 

(S ix ' ( i ,  t)S'Y'(O, 0 1 ) ~ -  t-3'2 for i / t  =constant; 

Other interesting examples are He I1 and Bose-Einstein condensation. 
The simplest model exhibiting a phase transition is the free Bose gas. The 

Goldstone particles are the Bose particles themselves; this is most easily seen by 
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computing the commutator limR+m ([j $ + $ ( x ) f R ( x )  dx, $'(y) + cL(y)]). We suppress a 
more detailed discussion since this model is frequently discussed in the literature. The 
dispersion law of the Goldstone mode is w ( k ) = c k 2  and we can draw the same 
conclusions as above. 

When a small interaction is switched on a radical change appears in the excitation 
spectrum. A phonon-type excitation branch emerges, which at least in the Landau 
model seems to be the only relevant collective excitation at low temperatures. Hence 
the only Goldstone excitation available is of phonon type with w ( k )  = ck for k -f 0 and 
appears in the intermediate states between the density p ( x ,  t )  = $*$(x, t )  and $+(y) + 
$(y) .  Therefore section (ii) of our general analysis does apply and we get a decay of the 
correlation between p ( x ,  t )  and $+(y, 0) + $(y, 0) as stated in part (ii) above. 

5. Summary 

Combining the results we derived in the preceding sections we arrive at the conclusion 
that whenever a phase transition shows up in a system and is accompanied by a 
symmetry breaking with Goldstone particles with a sufficiently long lifetime so that our 
approximation works, cluster properties are affected in not only the space direction but 
also in time and space-time. 

It is known (see, e.g., the papers by Wagner (1966) and Hohenberg (1966)) that the 
static cluster properties of correlation functions become poor mainly because of the 
spectrum of the fluctuations of certain quantities, while the exact dispersion law of the 
Goldstone mode seems not to be of great importance. On the other hand, the 
dynamical behaviour of correlations reflects in a sensitive way the character of the 
Goldstone mode. This comes from the fact that the static properties feel whether there 
is a phase transition at all only through the large fluctuations, whereas the time 
development of certain correlations is strongly affected by the detailed structure of the 
Goldstone excitation. Needless to say, these dynamical decay properties have observ- 
able effects, for example in the response functions and susceptibilities of the system. 

The influence of our results on susceptibilities and response functions, perhaps 
physically more interesting but on the other hand more involved, together with the 
dependence on the space dimension will be discussed in a forthcoming paper. 
Furthermore, we showed in Requardt (1980) that the stability and instability of the 
system under extended and boundary perturbations respectively are closely connected 
with these poor space-time cluster properties. 
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Appendix 

In this appendix we will demonstrate in detail by means of two well known examples 
how the singularities in the two-point functions emerge and that our ansatz in theorem 2 
seems to be in good agreement with the known facts. 
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A. l .  Magnon picture of ferromagnetism 

This approximative model can be found in any good textbook on solid state physics (see, 
e.g., Ziman 1964). One starts with the usual Hamiltonian 

where { s t }  is the usual three-vector of Pauli matrices; the interaction is assumed to be of 
nearest-neighbour type. Introducing new operators and neglecting a fourth-order term 
we arrive at 

& (= Eqa:. aq 
4 

with at  and a the magnon creation and annihilation operators, respectively, of energy 
Eq, momentum q(E,  - q 2  for small 4). Since the magnons obey Bose-Einstein statistics 
one has the well known formula for the average occupation iiq of each mode: 

1 Eq = -- eo% - 1 * 

In connection with SSB we have to calculate 

([Csi"',s:"])=(S:i))=m 1 ZO. 

The spectral intensity J ( k ,  w )  examined in this paper simply counts the number of 
magnons: 

with a;(b) = a i ( 0 )  e-'Ek' for free particles; hence it exhibits the same singularity we 
derived from general principles. The difference between (1 - e-OEk)-l and (eoEk -- l)-' 
is not accidental. The former arises from the KMS condition, the latter from a 
thermodynamical averaging over but the only thing important in our context is 
that their singular behaviour for k + 0 is of the same order, a constant x E;' (see after 
the proof to theorem 3). 

A.2. Bose-Einstein condensation 

The next phenomenon we will examine is Bose-Einstein condensation. Contrary to 
$ 4 ,  we discuss the following two-point function, which has the advantage that all 
quantities are observables and which also shows that autocorrelation functions exhibit 
these singularities. 

Let p ( x ,  t) denote the particle density with 

U " ( k l ) U ( k  +kl) F T p k ( t )  = dkl  eikzt  - i ( k + k , P r  e I 
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(for technical simplicity we normalise Ek to k 2 ) .  We are interested in the density- 
density correlation ( p k , ( f ) p k , , ( 0 ) )  in the presence of a condensate. Therefore we have to 
calculate expressions like 

(a  + ( k  ’) a (k’ + q ’1 a (k”)  a (k” + q ”)). 

Exploiting the commutation relations for U + ,  a and remembering the special role of 
U : ,  a. we arrive at 

( a  + (k ’) a ( k  ’ i- q ’ )a  + (k”) a (k” + q ” j)  

= ( a  +( k’)  a (k” + q” ) )S  ( k ’  + 4’ - k”)  + (a  +( k ‘ )  a +( k”)  a (k’ + q’)a (k” + 4”)). 

The second term yields 

(a’ (k’ )a(k’+  ~’))(a“k”+q’‘ j )S(q’)S(q”)  

i - ( a + ( k ’ ) a  (/if’+ q”))(a+(k”)a ( k ‘  + q’))S(k’  - k”- q”)S(k”- k’ - 4 ’ )  

+ ( a  ’ ( k  ’) U (k’ + 4’))n 08 (4 ‘)a (k”)S  ( k  ‘’ + 4”) 

+ ( a  + ( k  ”) a ( k  ’ + q ’ ) ) n “6 ( k  ” - k ‘ - q ’) S ( k ” j S ( k  ’ + q ’) 

+- ( a  +(a“) a ( k  ” + q”))noS (4  “ )S ( k  “ )S  ( k  ’ + 4 ’) + n : 
We see that we have a continuous contribution which consists of the terms without 

condensate no and which we would call according to our paper the normal part J,,. The 
terms with no are the relevant ones for SSB. To see their impact on Js(k,  t )  we have to 
integrate over k‘ ,  k”, which yields terms like 

dk’ dk” ( a + ( k  ’ j a ( k  1’ + q ( k  ‘’ jS (k ’ + ’) (k ’ - k ” - ”) e Xk’Zt e -IN’ +al’)’f 

= no(a+(q”)a(q”)) 

i 
which exhibits exactly the same features as in the magnon case, namely 

1 J,(k, w )  = constant x no - 8 ( w  . - E k ) .  
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